Table of Contents

Preface

Section I: Risk assessment

1. **Assessing risks of pesticides to bees: putting the science into context to inform regulatory decision making**
 - Thomas Steeger, Reuben Baris, Thomas Moriarty, Connie Hart, Wayne Hou
 - Page 8

2. **Expectations of risk assessors on the work of ICPPR in the context of a new regulation and a new guidance document**
 - Véronique Poulsen
 - Page 17

3. **Impact of non-professional use of plant protection products on honeybees in Belgium**
 - Michael Houbraken, Davina Fevery, Piëter Spanoghe
 - Page 21

4. **Potential routes of exposure as a foundation for a risk assessment scheme: a Conceptual Model**
 - John R. Purdy
 - Page 22

5. **Cyantraniliprole: Pollinator profile of the novel insecticides under laboratory, semi-field and field conditions**
 - Axel Dinter, Alan Samel
 - Page 28

6. **Evaluating honeybee protection goals using the BEEHAVE model**
 - Pernille Thorbek, Peter Campbell, Helen Thompson
 - Page 50

7. **The advantage of a toxicokinetic model of the honey bee colony in the context of the risk assessment of plant protection products**
 - Page 51

8. **Weeds in the treated field - a realistic scenario for pollinator risk assessment?**
 - Samuel K. Maynard, Ruth Albuquerque, Christoph Weber, Georg von Mérey, Michael F. Geiger, Roland Becker, Juergen Keppler, Joerg Masche, Kate Brougham & Mike Coulson
 - Page 56

9. **Acute toxicities and safety evaluation of chiral fipronil to *Apis mellifera* L. and *Trichogramma japonicum* Ashmead**
 - Cang Tao, Wang Xinquan, Wang Yanhua, Wu Changxing, Wu Shenggan, Chen Liping, Yu Ruixian, Zhao Xueping
 - Page 63

Section II: Developments in laboratory, semi-field and field testing for honeybees

10. **Developments in testing methods for use in risk assessment with the new EFSA guidance document**
 - Csaba Szentes
 - Page 64
2.2 Proposal for a new OECD guideline for the testing of chemicals on adult honey bees (Apis mellifera L.) in a 10 day chronic feeding test in the laboratory and results of the recent ring test 2014
Annette Kling, Stephan Schmitzer

2.3 The effects of fenoxycarb in a chronic Oomen feeding test – results of a ring-test*
Johannes Lückmann, Stephan Schmitzer

2.4 A bee brood study with relevant test concentrations using glyphosate as an example
Georg von Merey, S. Levine, Janine Doering, Steven Norman, Philipp Manson, Peter Sutton, Helen Thompson

2.5 Effectiveness of method improvements of OECD GD 75 – Evaluation by the ICP-PR Bee Brood Working Group*
Roland Becker, Johannes Lückmann, Jens Pistorius

2.6 Design and analysis of field studies with bees: a critical review of the draft EFSA guidance
Frank Bakker

2.7 Quantitative analytical tools for bee health (Apis mellifera) assessment
Dorit Avni, Merav Gleit Kielmanowicz, Alex Inberg, Yael Golani, Inbar Maayan Lerner, Guy Gafni, Tomer Mahler

2.8 Guidance document on the honeybee (Apis mellifera) brood test under field conditions
Hervé Giffard, Gerald Huart

2.9 Electronic beehive monitoring – applications to research
Sandra Kordić Evans

2.10 A methodology to assess the effects of plant protection product on the homing flight of honeybee foragers
Julie Fourrier, Julie Petit, Dominique Fortini, Pierrick Aupinel, Clémence Morhan, Cyril Vidaux, Stéphane Gradeau, Mickaël Henry, Axel Decourtye

2.11 Available methods for the sampling of nectar, pollen, and flowers of different plant species
Silvio Knäbe, Pierre Mack, Ang Chen², Sigrun Bocksch

2.12 The impact of imidacloprid and the interaction between imidacloprid and pollen scarcity on vitality and hibernation of honey bee colonies
J. van der Steen, C. Hok-Ahin, B. Cornelissen

2.13 Fipronil effect on the frequency of anomalous brood in honeybee reared in vitro

2.14 Single versus double field rate: Do different rates of fenoxycarb in chronic Oomen bee brood feeding tests cause different effects sizes?
Sabine Hecht-Rost, Annika Alscher, Christian Claßen, Andrea Klockner, Tobias Schlotz, Jörg Staffel, Johannes Lückmann
2.15 Negative sublethal effect of the insecticide thiamethoxam on honeybees
Ahmed Hichem Menail, Wided Fella Bouchema, Zineb Mansouri, Razika Maoui, Wahida Loucif-Ayad

2.16 Semi-field and field testing on the honey bee working group
Frank Bakker, Heino Christi, Mike Coulson, Axel Dinter, Hervé Giffard, Nicole Hanewald, Gavin Lewis, Mark Miles, Jens Pistorius, Job van Praagh, Marit Randall, Christine Vergnet, Connie Hart, Christoph Sandrock, Thomas Steeger

Section III: Methods and risk assessment for seed treatments and guttation

3.1 Dust drift- from exposure to risk for honey bees
Jens Pistorius, Matthias Stähler, Pablo-T. Georgiadis, Detlef Schenke, Udo Heimbach

3.2 Neonicotinoids and bees: A large scale field study investigating residues and effects on honeybees, bumblebees and solitary bees in oilseed rape grown from clothianidin-treated seed
Nadine Kunz, Malte Frommberger, Anke C. Dietzsch, Ina P. Wirtz, Matthias Stähler, Eva Frey, Ingrid Illies, Winfried Dyrba, Abdulrahim Alkassab, Jens Pistorius

3.3 Honey bee collected pollen: forage species importance and levels of neonicotinoid contamination
Mary A. Harris, Reid Palmer, Joel Coats

3.4 Neonicotinoid seed treatment products – Occurrence and relevance of guttation for honeybee colonies
Alexander Nikolakis, Juergen Keppler, Mark Miles, Ralf Schoening

3.5 Effects of a neonicotinoid seed treatment in winter oilseed rape (active substance clothianidin) on colony development, longevity, and development of hypopharyngeal glands of honey bees (Apis mellifera L.) in field, semi-field and cage tests.
Eva Blum, Ingrid Illies, Stephan Häretel, Jens Pistorius

3.6 Cyantraniliprole: Low risk for bees resulting from seed treatment use in oilseed rape
Axel Dinter, Alan Samel

3.7 Neonicotinoids and honey bee health - The effect of the neonicotinoid clothianidin applied as a seed dressing in Brassica napus on pathogen and parasite prevalence and loads in free-foraging adult honeybees (Apis mellifera)
Julia Goss, Maj Rundlöf, Joachim de Miranda, Riccardo Bommarco, Thorsten R. Pedersen, Henrik G. Smith, Ingemar Fries

3.8 New field application method to assess the effects on honeybees (Apis mellifera L.) using a purpose-built dust applicator in flowering crops
Jens Pistorius, Malte Frommberger, Matthias Stähler, Udo Heimbach, Anja Wehner, Silvio Knäbe

3.9 Distance a useful risk mitigation measure for honeybees exposed to frequently guttating seed-treated fields?
Ina Wirtz, Detlef Schenke, Wolfgang Kirchner, Jens Pistorius
Section IV: Developments in laboratory, semi-field and field testing for non-Apis bees

4.1 Acute adult first tier toxicity tests Bombus spp and Osmia spp. 173
J. van der Steen, Nicole Hanewald, I. Roessink

4.2 Evaluating the feasibility of using the red mason bee (Osmia bicornis L.) in different experimental setups 174
Anke C. Dietzsch, Nadine Kunz, Ina P. Wirtz, Malte Frommberger, Jens Pistorius

4.3 Adaptation of the honeybee (Apis mellifera) tunnel and field test systems (EPPO 170 & OECD 75) for bumblebee (Bombus spp) testing 179
Christoph Sandrock, Marco Candolfi

4.4 Lethal and sublethal effects of azadirachtin on the bumblebee Bombus terrestris (Hymenoptera: Apidae) 180
Wagner F. Barbosa, Laurens De Meyer, Raul Narciso C. Guedes, Guy Smagghe

4.5 Effect of the microbial biopesticides Prestop-Mix and BotaniGard on respiratory physiology and longevity of bumblebees 191
Marika Mänd, Reet Karise, Riin Muljar, Guy Smagghe

4.6 Oral toxicity of dimethoate to adult Osmia cornuta using an improved laboratory feeding method for solitary bees 192
Silvia Hinarejos, Xavier Domene, Jordi Bosch

4.7 Workshop summary: Bumble bee ecotoxicology and risk assessment 193
Ana R. Cabrera, Maria Teresa Almanza, Christopher Cutler, David L. Fischer, Silvia Hinarejos, Gavin Lewis, Daniel Nigro, Allen Olmstead, Jay Overmyer, Daniel Potter, Nigel E. Raine, Cory Stanley-Stahr, Helen Thompson, Jozef van der Steen

4.8 Compilation of results of the ICPPR non-Apis working group with a special focus on the bumblebee acute oral and contact toxicity ring test 2014 ICPPR Non-Apis Working Group 194

4.9 Methodological aspects of semi-field tunnel studies with bumblebees 207
Maria Teresa Almanza, David Gladbach, Alexander Nikolakis

4.10 Chlorantraniliprole: Lack of effects on bumblebee reproduction (Bombus terrestris) under semi-field conditions in Phacelia tanacetifolia 208
Axel Dinter, Kristin E. Brugger

4.11 Pesticide Risk Assessment: Comparing sensitivities of ‘non-Apis’ bees with the honeybee (Apis mellifera L.) 218
Lea Franke, Lukas Jeker, Christina Rehberg, Peter Stahlschmidt, Carsten A. Brühl

4.12 Effects of imidacloprid in combination with λ-cyhalothrin on the model pollinator Bombus terrestris at different levels of complexity 219
Maxime Eraerts, Bob Ceuppens, Jana Asselman, Karel De Schamphelaere, Guy Smagghe
4.13 - Comparing effects on honeybees and bumblebees after application of contaminated dust in semi-field and field conditions
Malte Frommberger, Pablo-T. Georgiadis, Nadine Kunz, Anke C. Dietzsch, Ina Patrizia Wirtz, Matthias Stähler, Udo Heimbach, Jens Pistorius

4.14 Experimental designs for field and semi-field studies with solitary wild bees
G. Bosse, T. Jütte, O. Klein

4.15 Insecticidal activity of a PPP as a criterion to trigger laboratory studies with non-Apis bees? Make a BeeCision!
Oliver Körner, Sonja Haaf, Fabian Schroeder, Sabine Hecht-Rost, Michael Faupel, Johannes Lückmann

4.16 Does insecticide drift into adjacent wildflower plantings affect bumble bee (Bombus impatiens L.) foraging activity and reproduction?
Emily May, Clara Stuligross, Rufus Isaacs

4.17 Effects of the agrochemicals trinexapac-ethyl and lambda-cyhalothrin on the pollinator Bombus terrestris
Bob Ceuppens, Tim Vleugels, Gerda Cnops, Isabel Roldan-Ruiz, Guy Smagghe

4.18 Toxicity assessment of mixtures of neonicotinoids and systemic fungicides or biopesticides in bumblebees (Bombus terrestris)
Laurian Parmentier, Eline Muys, Sara Coppin, Laurens Demeyer, Jana Asselman, Karel De Schamphelaere, Guy Smagghe

4.19 Method development of a semi-field study using micro-tunnels with the solitary bee species Osmia bicornis
Christina Rehberg, Lukas Jeker, Sibylle Kaiser, Peter Stahlschmidt, Carsten A. Brühl

4.20 Reduced-risk insecticides in Neotropical stingless bee species: impact on survival and activity
Hudson Vaner V. Tomé, Wagner F. Barbosa, Alberto S. Corrêa, Lessando M. Gontijo, Gustavo F. Martins, Raul Narciso C. Guedes

Section V: Risk management

5.1 Risk management for insect pollinators in the United States: past practices, current developments, and future directions
Erik Johansen

5.2 Health Canada: Pollinator Protection and Pesticides
Connie Hart, Mary Mitchell, Janice Villeneuve

5.3 Using diversity to decrease the risks of plant-incorporated pesticides to pollinators
Christina L. Mogren, Kristine T. Nemec, Michael M. Bredeson, Jonathan G. Lundgren

5.4 Risk management for pollinators: regulatory context, overview of risk management tools and perspectives
Anne Alix, Claudia Garrido, Mark Miles, Erik Johansen, Burkhard Golla
Section VI: Monitoring

6.1 Honey bee poisoning incidents in Germany 264
Jens Pistorius, David Thorbahn, Gabriela Bischoff

6.2 Honeybee colony disorder in crop areas: the role of pesticides and viruses 265
Noa Simon-Delso, Gilles San Martin, Etienne Bruneau, Laure-Anne Minsart, Coralie Mouret, Louis Hautier

6.3 Survey study on fruit pollination practices and their impact on honeybee health in the Flemish region (2012-2013) 266
Tim Belien, Tom Thys, Dany Bylemans

6.4 Beeswax residue analysis points to an alarming contamination: a Belgian case study 275
Jorguen Ravoet, Wim Reybroeck, Lina De Smet, Dirk C. de Graaf

6.5 Monitoring in-hive residues of neonicotinoids in relation to bee health status 276
John R. Purdy

6.6 Monitoring effects of pesticides on pollinators - a review of methods and outcomes by the ICPPR working group 284
Anne Alix, Claudia Garrido

6.7 Hydroxylmethylfurfural induces reactive oxygen species (ROS)-dependent activation of the Toll pathway in honey bees 296
Lina De Smet, Claude Saegerman, Jorguen Ravoet and Dirk C. de Graaf

Section VII: Summary of the 12th symposium

7.1 Synopsis of the 12th International Symposium ‘Hazards of Pesticides to Bees’ 297
Anne Alix

7.2 List of participants 300

7.3 Glossary 306

7.4 Authors 308